

SKA telescope developer portal

Welcome to the Square Kilometre Array [http://www.skatelescope.org] software
documentation portal. Whether you are a developer involved in SKA or you are
simply one of our many users, all of our software processes and projects are
documented in this portal.

Scope

This documentation applies to the bridging phase of the SKA project, further
updates and scope changes will be published on this website.
Part of the bridging phase goals will be to consolidate and enrich this portal
with more detailed information. It is thus anticipated that in this phase
the change rate of the documentation will be very frequent.

SKA Code of Conduct

SKA Organisation (SKAO) is committed to the highest standards of business
ethics and as such expects everyone involved in SKAO-related business to
uphold the standards and expected professional behavior set out in
SKA Code of Ethics page [https://www.skatelescope.org/ska-organisation-code-of-conduct-for-meetings/] .

The code of ethics applies to every SKA collaborators and it is the
reference guide defining the culture of this online community of contributors.

	Download the SKA Code of Ethics [http://www.skatelescope.org/wp-content/uploads/2017/12/SKAO_Code_of_Ethics_Nov17.pdf]

SKA developer community

SKA software development is managed in an open and transparent way.

	Howto join the SKA developer community

	Agile teams and responsibilities

	SKA developer community decision making process

	Recommended readings

Todo

	SAFe process implementation

	Community forum

Development tools

Git

Git is adopted as distributed version control system, and all SKA code shall be hosted in a git repository.
The github organization ska-telescope can be found at https://github.com/ska-telescope . All SKA developers
must have a github account and be added to the organization as part of a team.

	Git

Jira

Every team is tracking daily work in a team-based project on our JIRA server at [https://jira.skatelescope.org]

Todo

	Create a new project

	Link to issue tracker

Development guidelines

Definition of Done

The definition of done is used to guide teams in planning and estimating the size of stories and features:

	Definition of Done

Python coding guidelines

A Python skeleton project is created for use within the SKA Telescope. This skeleton purpose is to
enforce coding best practices and bootstrap the initial project setup. Any development should start
by forking this skeleton project and change the apropriate files.

	Python Coding Guidelines

Projects

	List of projects

	Create a new project

	Documenting a project

	Licensing your project

Developer Services

	AIT cluster

Commitment to opensource

As defined in SKA software standard, SKA software development is committed to opensource,
and an open source licensing model is always preferred within SKA software development.

Todo

	Committment to opensource

	Exceptions

Howto join the SKA developer community

Todo

	to be defined as soon as we have onboarding procedures for new members, and specific training events.

Agile teams and responsibilities

SKA software development is organized in agile teams.

Development team

See https://www.scaledagileframework.com/dev-team/

Todo

	should we expand this section? The whole portal is dedicated to describe DEV practices and tools …

Scrum Master

The Scrum Master of each team is responsible for the process the team
follows. A generic description of this role can be found on the SAFe website [https://www.scaledagileframework.com/scrum-master/].
The SKA Scrum Masters are also responsible for:

	Meet the team, make sure they know each other and find a nice way to present interests, skills and get to know each other. Lead the team to find a name they like.

	Make sure all team members can access SKA confluence and jira.

	Make sure all team members have access to SKA video conferencing tools.

	Create a team page on the SKA confluence portal [https://confluence.skatelescope.org/display/SE/Bridging+organisation] describing who belongs to the team and his/her role. This page will serve as an entry point for team related information.

	Use the Team Jira board to plan and report team activity happening in the development sprints.

	Run sprints planning/retrospective/reviews cycles and daily stand-up meetings with the team, making sure the team follows an improvement process.

	Work with the team in order to understand the SKA Definition of Done and development practices.

	Setup and maintain a slack channel for the team according to the slack usage guidelines.

	Setup and maintain a github team including all team members under the SKA organization github account [https://github.com/ska-telescope].

	Manage permissions on github repositories the team is working on.

	Maintain consistency between the team composition on the various tools and platforms, and make sure that team members are using those in an appropriate way.

	Take part in the Scrum Of Scrums meeting, coordinating his/her activity with all the SMs participating in the development effort.

Product Owner

See https://www.scaledagileframework.com/product-owner/

Todo

	Define specifics activities for SKA POs.

SKA developer community decision making process

Todo

	this is still TBD with the program management team.

Recommended readings

This page contains a list of recommended readings that describe the
practices adopted by SKA developers.

System Design

	Continuous Delivery [https://www.continuousdelivery.com/] describes system design and practices necessary to realize continuos delivery.

	Design Patterns: Elements of Reusable Object-Oriented Software [https://en.wikipedia.org/wiki/Design_Patterns] describes the most common design patterns to be found in a software system.

Programming

	Code complete [https://www.amazon.co.uk/Code-Complete-Practical-Handbook-Construction/dp/0735619670/ref=sr_1_1?ie=UTF8&qid=1543264012&sr=8-1&keywords=code+complete+2] is a practical introduction to software craftmanship.

	The pragmatic programmer [https://pragprog.com/book/tpp/the-pragmatic-programmer] is a good introduction to sound programming practices.

	Clean code [https://www.amazon.co.uk/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882/ref=sr_1_2?ie=UTF8&qid=1543264012&sr=8-2] introduces quality software practices showcasing different examples and good principles from the agile world.

	Extreme programming explained [https://www.amazon.co.uk/Extreme-Programming-Explained-Embrace-Change/dp/0321278658] can be extremely useful to teams and developers embracing a more agile way of working for the first time.

Programming Languages

Python

	Python in a Nutshell [http://shop.oreilly.com/product/0636920012610.do] is a comprehensive Python reference to have on your desk while developing any sort of Python application.

	Python testing with pytest [https://pragprog.com/book/bopytest/python-testing-with-pytest] covers pytest framework and related testing best practices in the Python ecosystem.

	Fluent Python [http://shop.oreilly.com/product/0636920032519.do] is a useful guide to writing effective, idiomatic
Python code. This book is recommended reading for intermediate Python developers and those coming from other
languages, showing how Python features and idioms should be used most effectively.

C++

	Effective C++ [https://www.amazon.co.uk/Effective-Specific-Programs-Professional-Computing/dp/0321334876] contains useful recipes for sound implementations of common C++ patterns.

	Effective STL [https://www.amazon.co.uk/Effective-Specific-Programs-Professional-Computing/dp/0321334876] focuses on the correct usage of the standard teamplate library.

	Effective Modern C++ [http://shop.oreilly.com/product/0636920033707.do] follows from the previous series, expanding on the transition to C++11 and C++14 and their new constructs.

Git

Git is the version control system of choice used by SKA. Describing the basics
of how to use git is out of the scope of this developer portal, but it is
fundamental that all developers contributing to SKA get familiar with git and
how to use it. These online resources are a good starting point:

	Learn git interactively: https://learngitbranching.js.org/

	Official git reference at: https://git-scm.com/docs

	Interactive Git cheatsheet: http://www.ndpsoftware.com/git-cheatsheet.html

Committing code

When working on a development project, it is important to stick to these simple
commit rules:

	Commit often.

	Have the Jira story ID at the beginning of your commit messages.

	Git logs shall be human readable in sequence, describing the development activity.

	Use imperative forms in the commit message.

Configure git

Set GIT institutional email address

Setup git so that it uses your institutional email account to sign commits,
this can be done in your global git configuration:

$ git config --global user.email "your@institutional.email"
$ git config --global user.email
your@institutional.email

Or you can configure the mail address on a project basis.

$ cd your/git/project
$ git config user.email "your@institutional.email"
$ git config user.email
your@institutional.email

Branching policy

Albeit the SKA organisation does not want to be prescriptive about git
workflows, two concepts are important to the SKA way of using GIT:

	The master branch of a repository shall always be stable.

	Branches shall be short lived, merging into master as often as possible.

Stable means that the master branch shall always compile and build correctly,
and executing automated tests with success. Every time a master branch results
in a condition of instability, reverting to a condition of stability shall have
the precedence over any other activity on the repository.

Master based development

We suggest teams to start developing adopting a master-based development
approach, where each developer commits code into the master branch at least
daily. While this practice may seem counter intuitive, there is good evidence
in literature that it leads to a better performing system. Branches are
reduced to a minimum in this model, and the discipline of daily commits into
master greatly enhances the communication within the team and the modularity
of the software system under construction. The workflow follows these steps:

	As a developer starts working on a story, all his commits related to the story shall contain the story Jira ID in the message. i.e. AT-51 method stubs

	The developer continues working on his local master branch with multiple commits on the same story.

	Each day the local master pulls the remote and incorporates changes from others.

	The local master is tested successfully.

	The local commits are pushed onto the remote master.

	The CI pipeline is correctly executed on the remote master by the CI server.

Implemented correctly, this practice leads to having an integrated, tested,
working system at the end of each development interval, that can be shipped
directly from our master branch with the click of a button.

Story based branching

We support adopting a story-based branching model, often referred to as
feature branching. This workflow effectively leverages pull requests enabling code reviews and continuous branch testing, but it
is important to stress the importance of having short lived branches. It is
easy to abuse this policy and have long living branches resulting in painful
merge activities and dead or stale development lines.
Bearing in mind that a story by definition is some
piece of work a developer should conclude in the time of a sprint, the workflow
would follow these steps:

	As a developer starts working from master on a new story, she creates a new branch.

	The new branch shall be named as the story, i.e. story-AT1-26.

$ git branch
* master
$ git checkout -b my-story-id
$ git branch
master
* my-story-id

	All the commit messages contributing to the development of the story begin with the story ID, i.e. AT1-26 basic testing.

	The developer makes sure that all tests execute correctly on her local story branch.

	When the story is ready for acceptance the developer pushes the story branch upstream.

$ git push -u origin my-story-id

	A pull request is created on the DVCS server to merge the story branch into the master branch.

	Reviewers interact with comments on the pull request until all conflicts are resolved and reviewers accept the pull request.

	Pull request is merged into Master.

	The CI pipeline is executed successfully on the master branch by the CI server.

Whenever a team deviates from one of the recommended policy, it is important
that the team captures its decision and publicly describe its policy,
discussing it with the rest of the community.

See a more detailed description of this workflow at https://guides.github.com/introduction/flow/

Github

Use institutional email

Create a github account using your institutional email address at
https://github.com/join?source=login . If you already have an account on
github, you shall have your institutional email added to your profile: click on
your user icon on the top right corner and select Settings->Emails->Add email
address .

Setup SSH key

Associate your ssh-key to your user at Settings->SSH and GPG keys .

Join SKA Organisation

SKA Organisation can be found on github at https://github.com/ska-telescope/ , The scrum master of your team will make sure you can access it.

Desktop client

Less experienced developers can use the github desktop client at:
https://desktop.github.com/
This definitely lowers the barrier of using git for a number of different users.

Continuous Integration

Creating a new CICD project

GitLab CI/CD can be used with GitHub or any other Git server. Instead of
moving your entire project to GitLab, you can connect your external
repository to get the benefits of GitLab CI/CD (documentation pages for
github can be found
here [https://docs.gitlab.com/ee/ci/ci_cd_for_external_repos/github_integration.html]).

In order to do that, the very first step is to create an account in GitLab. It is recommended to sign_in [https://gitlab.com/users/sign_in] with the GitHub account.
for any information or requests on those aspects, please contact the SCRUM master of your agile team.

[image: image7]

Once logged, the home page allows for the creation of a new project (see images below).
[image: image0]

The new project page allows to create a project (CI/CD) from an external
repository.

[image: image1]

The step-by-step procedure is the following:

	Select the option “Repo by URL”,

	Write the repository url (i.e. https://github.com/ska-telescope/ska-skeleton.git),

	Select a project name (for instance ska-skeleton-ci),

	Select the correct ska group (i.e. ska-telescope),

	Select/write a project slug (URL-friendly version of a repository name) and

	Insert a project description.

[image: image2]

It is also possible to set the visibility of the
project [https://gitlab.com/help/public_access/public_access] (the
default is public).

Connecting an external repository will set up repository
mirroring [https://docs.gitlab.com/ee/workflow/repository_mirroring.html]
(it is indicated in the GitLab project home page) and create a
lightweight project where issues, merge requests, wiki, and snippets
disabled.

[image: image3]

Concerning mirroring, it is important to note the following points:

	Once you activate the pull mirroring feature, the mirror will be inserted into a queue. A scheduler will start every minute and schedule a fixed amount of mirrors for update, based on the configured maximum capacity.

	If the mirror successfully updates it will be enqueued once again with a small backoff period.

	If the mirror fails (eg: branch diverged from upstream), the project’s backoff period will be penalized each time it fails up to a maximum amount of time

	You should not push commits directly to the repository on GitLab. Instead, any commits should be pushed to the upstream repository. Changes pushed to the upstream repository will be pulled into the GitLab repository, either:

	Automatically within a certain period of time.

	When a forced update is initiated.

The update can be forced with the specific button in the repository settings:

[image: image4]

Configuring a CI pipeline

To enable the Gitlab automation, it is needed to insert a
configuration
file [https://docs.gitlab.com/ee/ci/yaml/README.html] that must be placed in the root of the repository (i.e. GitHub) and called “.gitlab-ci.yml”. It mainly contains definitions of how your project should be built. An example of
it can be found within the project “ska-skeleton” available
here [https://github.com/ska-telescope/ska-skeleton/blob/master/.gitlab-ci.yml].
Once the file is in the root directory, it is possible to run the CI pipeline manually
(creating a pipeline) or with a commit in github as soon as the
mirroring finishes. The following pipeline was created manually pressing
the button “Run pipeline” on a specific branch (i.e. master).

[image: image5]

Using a specific executor

The pipeline by default will run with a shared runner made available from GitLab.
It is also possible to assign specific ska runner to the project (by adding the tags [https://docs.gitlab.com/ee/ci/yaml/README.html#tags]).
To do that the option must be enabled:

[image: image6]

The EngageSKA cluster located at the Datacenter of Institute of Telecommunication (IT) in Aveiro provides some virtual machines available adding the tag “engageska” or “docker-executor” as shown here [https://github.com/ska-telescope/ska-skeleton/blob/master/.gitlab-ci.yml].

Definition of Done

Done-ness is defined differently at different stages of development and for different purposes.

Story

	Code is supplied with an acceptable license

	Code is peer-reviewed (via pull-request process)

	Code is checked into SKA repository with reference to ticket

	Code has tests that have adequate (between 75% and 90%) coverage

	Code compiles cleanly with no warnings

	Code adheres to SKA language specific style

	Code is deployed to continuous integration environment

	Code passes regression testing

	Code passes smoke test

	NFRs are met

	Story is tested against acceptance criteria

	Story is documented

	Story ok-ed by Product Owner

Code documentation

	Public API exposed is clearly documented

	Code is documented inline according to language specific standards

	Documentation is peer-reviewed by stakeholder (e.g. Product Owner for a feature or technical peer for an enabler) via pull-request mechanism.

	Documentation is deployed to externally visible website accessible via the developer portal.

Feature

	Feature has been demonstrated to relevant stakeholders

	Feature meets the acceptance criteria

	Feature is accepted by Feature owner

	Feature is integrated in an integration environment

	Code documentation is integrated as part of the developer portal

	Architectural documentation is updated to reflect the actual implementation

Todo

	Testing Guidelines

	Writing Command-Line Scripts

	C or Cython Extensions

Python Coding Guidelines

This section describes requirements and guidelines.

Interface and Dependencies

	All code must be compatible with Python 3.5 and later.

	The new Python 3 formatting style should be used (i.e.
"{0:s}".format("spam") instead of "%s" % "spam").

Documentation and Testing

	Docstrings must be present for all public classes/methods/functions, and
must follow the form outlined by PEP8 Docstring Conventions [https://www.python.org/dev/peps/pep-0257/].

	Unit tests should be provided for as many public methods and functions as
possible, and should adhere to Pytest best practices [https://docs.pytest.org/en/latest/goodpractices.html].

Data and Configuration

	All persistent configuration should use python-dotenv [https://github.com/theskumar/python-dotenv].
Such configuration .env files should be placed at the top of the ska_skeleton
module and provide a description that is sufficient for users to understand the settings changes.

Standard output, warnings, and errors

The built-in print(...) function should only be used for output that
is explicitly requested by the user, for example print_header(...)
or list_catalogs(...). Any other standard output, warnings, and
errors should follow these rules:

	For errors/exceptions, one should always use raise with one of the
built-in exception classes, or a custom exception class. The
nondescript Exception class should be avoided as much as possible,
in favor of more specific exceptions (IOError, ValueError,
etc.).

	For warnings, one should always use warnings.warn(message,
warning_class). These get redirected to log.warning() by default.

	For informational and debugging messages, one should always use
log.info(message) and log.debug(message).

The logging system should use the built-in Python logging [https://docs.python.org/3/library/logging.html] module.

Coding Style/Conventions

	The code will follow the standard PEP8 Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008/]. In particular, this includes
using only 4 spaces for indentation, and never tabs.

	The import numpy as np, import matplotlib as mpl, and import
matplotlib.pyplot as plt naming conventions should be used wherever
relevant. from packagename import * should never be used, except as a
tool to flatten the namespace of a module. An example of the allowed usage
is given in Acceptable use of from module import *.

	Classes should either use direct variable access, or Python’s property
mechanism for setting object instance variables. get_value/set_value
style methods should be used only when getting and setting the values
requires a computationally-expensive operation. Properties vs. get_/set_
below illustrates this guideline.

	Classes should use the builtin super() [https://docs.python.org/3/library/functions.html#super] function when making calls to
methods in their super-class(es) unless there are specific reasons not to.
super() [https://docs.python.org/3/library/functions.html#super] should be used consistently in all subclasses since it does not
work otherwise. super() vs. Direct Calling illustrates why this is
important.

	Multiple inheritance should be avoided in general without good reason.

	__init__.py files for modules should not contain any significant
implementation code. __init__.py can contain docstrings and code for
organizing the module layout, however (e.g. from submodule import *
in accord with the guideline above). If a module is small enough that
it fits in one file, it should simply be a single file, rather than a
directory with an __init__.py file.

Unicode guidelines

For maximum compatibility, we need to assume that writing non-ASCII
characters to the console or to files will not work.

Including C Code

	When C extensions are used, the Python interface for those extensions
must meet the aforementioned Python interface guidelines.

	The use of Cython [https://cython.org/] is strongly recommended for C extensions. Cython [https://cython.org/] extensions
should store .pyx files in the source code repository, but they should be compiled
to .c files that are updated in the repository when important changes are made
to the .pyx file.

	In cases where C extensions are needed but Cython [https://cython.org/] cannot be used, the PEP 7
Style Guide for C Code [https://www.python.org/dev/peps/pep-0007/] is
recommended.

Examples

This section shows examples in order to illustrate points from the guidelines.

Properties vs. get_/set_

This example shows a sample class illustrating the guideline regarding the use
of properties as opposed to getter/setter methods.

Let’s assuming you’ve defined a ':class:`Star`' class and create an instance
like this:

>>> s = Star(B=5.48, V=4.83)

You should always use attribute syntax like this:

>>> s.color = 0.4
>>> print(s.color)
0.4

Using Python properties, attribute syntax can still do anything possible with
a get/set method. For lengthy or complex calculations, however, use a method:

>>> print(s.compute_color(5800, age=5e9))
0.4

super() vs. Direct Calling

By calling super() [https://docs.python.org/3/library/functions.html#super] the entire method resolution order for
D is precomputed, enabling each superclass to cooperatively determine which
class should be handed control in the next super() [https://docs.python.org/3/library/functions.html#super] call:

This is safe

class A(object):
 def method(self):
 print('Doing A')

class B(A):
 def method(self):
 print('Doing B')
 super().method()

class C(A):
 def method(self):
 print('Doing C')
 super().method()

class D(C, B):
 def method(self):
 print('Doing D')
 super().method()

>>> d = D()
>>> d.method()
Doing D
Doing C
Doing B
Doing A

As you can see, each superclass’s method is entered only once. For this to
work it is very important that each method in a class that calls its
superclass’s version of that method use super() [https://docs.python.org/3/library/functions.html#super] instead of calling the
method directly. In the most common case of single-inheritance, using
super() is functionally equivalent to calling the superclass’s method
directly. But as soon as a class is used in a multiple-inheritance
hierarchy it must use super() in order to cooperate with other classes in
the hierarchy.

Note

For more information on the the benefits of super() [https://docs.python.org/3/library/functions.html#super], see
https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

Acceptable use of from module import *

from module import * is discouraged in a module that contains
implementation code, as it impedes clarity and often imports unused variables.
It can, however, be used for a package that is laid out in the following
manner:

packagename
packagename/__init__.py
packagename/submodule1.py
packagename/submodule2.py

In this case, packagename/__init__.py may be:

"""
A docstring describing the package goes here
"""
from submodule1 import *
from submodule2 import *

This allows functions or classes in the submodules to be used directly as
packagename.foo rather than packagename.submodule1.foo. If this is
used, it is strongly recommended that the submodules make use of the __all__
variable to specify which modules should be imported. Thus, submodule2.py
might read:

from numpy import array, linspace

__all__ = ['foo', 'AClass']

def foo(bar):
 # the function would be defined here
 pass

class AClass(object):
 # the class is defined here
 pass

This ensures that from submodule import * only imports ':func:`foo'
and ':class:`AClass', but not ':class:`numpy.array' or
':func:`numpy.linspace'.

Acknowledgements

The present document’s coding guidelines are derived from project
Astropy’s codding guidelines [http://docs.astropy.org/en/stable/development/codeguide.html].

List of projects

The following list is automatically extracted from our github organisation page
at [https://skatelescope.org/ska-telescope]

	p1

	p2

Create a new project

Todo

	create a new github repository

	starting from ska-skeleton

Documenting a project

Todo

	the docs folder

	using readthedocs as the ska-skeleton project

	adding textual documentation

	adding automatically extracted documentation

	documenting the public API

Licensing your project

SKA organisation promotes a model of open and transparent collaboration. In this model collaboration is made possible using permissive licenses, and not by pursuing the ownership of code by the organisation.
Copyright will thus belong to the institutions contributing to source code development for the lifetime of the project, and software developed for the SKA telescope will be available to the wider community as source code.
Redistribution of the SKA software will always maintain the original copyright information, acknowledging the original software contributor.

License File

Every software repository shall be licensed according to the SPDX standard.
Every repository shall contain a LICENSE file in its top directory, indicating the copyright holder and the license used for the software in its full textual representation.

Licenses

SKA office will automatically accept the BSD 3-clause new LICENSE and any exception to this shall be justified and agreed with SKA office Software Quality Assurance engineer. A template of the license is presented at the end of this page.
Existing repositories already published with permissive licenses such as Apache 2.0 or MIT licenses will also be accepted as part of the handover procedure, while new repositories are encouraged to adopt the recommended BSD license.

Copyright Information

Copyright information shall be included in the license file, clearly stating the year and the institution the copyright applies to, in the form:

Copyright <years> <institution>

An example of this for the SKA organisation would be:

Copyright 2018 SKA Organisation

A non exhaustive list of possible copyright notices, based on pre construction SKA collaborators, may include one or more of the following:

Copyright 2018 AIT Aveiro
Copyright 2018 ASTRON
Copyright 2018 ATC
Copyright 2018 CSIRO
Copyright 2018 ICRAR
Copyright 2018 INAF
Copyright 2018 NCRA
Copyright 2018 SARAO
Copyright 2018 University of Malta
Copyright 2018 University of Manchester
Copyright 2018 University of Oxford
...

A single license file can contain multiple copyright notices, indicating the major contributors to the software repositories.
It is not in the scope of the copyright notice to maintain an updated list of single contributors which can always be extracted from the DVCS server system in a more reliable and maintainable way.
Whenever a license assumes that copyright is explicitly stated as part of the header of every source code file, this can be summarized into a single centralized COPYRIGHT file in the top directory of the repository, containing all copyright attributions and referred to by the single header comments in the source code:

Copyright 2018 The Foo Project Developers. See the COPYRIGHT file at the top-level directory of this distribution.

It will be the duty of single repository administrators to make sure that copyright notices are maintained and updated according to the institution contributing to the project.

BSD 3-Clause “New” or “Revised” License text template

Copyright <YEAR> <COPYRIGHT HOLDER>

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

AIT cluster

Cluster specs

[image: ../_images/cluster.png]

Access the cluster

The EngageSKA cluster locates at the Datacenter of Institute of Telecommunication (IT) in Aveiro. To have access to the cluster, it is required to be inside the facilities or have VPN credentials to access the IT network remotely.

Access to the network using VPN

At the moment, VPN credentials are sent individually and is required to send an email to Dzianis Bartashevich (bartashevich@av.it.pt) with the knowledge from Marco Bartolini (M.Bartolini@skatelescope.org).

You will receive an .ovpn key to access the private network.

In order to connect you will need an OpenVPN client:

	Windows and Linux: https://openvpn.net/community-downloads/

	MacOS: https://tunnelblick.net/

Now just drag or add the .ovpn file to VPN the client. The follow tutorial is for tunnelblick, but it is similar to the other VPN clients.

[image: ../_images/openvpn_open.png]
[image: ../_images/openvpn_more.png]
Now that you have configured the VPN credentials click on the VPN client icon located at the toolbar and connect to the private network.

[image: ../_images/openvpn_connect.png]
If all went okay, you are successfully connected.

[image: ../_images/openvpn_success.png]

Access to the OpenStack platform (Virtualization)

[image: ../_images/openstack_login.png]
The OpenStack platform requires authentication in order to use it.

At the moment, OpenStack credentials are sent individually and it is required to send an email to Dzianis Bartashevich (bartashevich@av.it.pt with the knowledge from Marco Bartolini (M.Bartolini@skatelescope.org). In the next phase, OpenStack could support GitHub authentication.

To access the OpenStack platform go to http://192.168.93.215/dashboard (require VPN) and login with your credentials.

Virtual machine deployment

	At the sidebar, go to Project -> Compute -> Instances and click on the “Launch Instance” button:

[image: ../_images/openstack_project_compute_instance.png]

	At this stage a menu will pop-up and will ask to specify virtual machine caracteristics, chose an name for virtual machine:

[image: ../_images/openstack_vm_chars.png]

	Select the Operating System you want your VM to have:

NOTE: Please choose the option “Yes” at “Delete Volume on Instance Delete” so when you decide to delete the instance the volume will be also deleted and not occupy unnecessary space

[image: ../_images/openstack_vm_os.png]
[image: ../_images/openstack_vm_os2.png]

	Select the flavor which you want your VM to have:

[image: ../_images/openstack_flavor.png]
[image: ../_images/openstack_flavor2.png]

	Select private network (int-net):

[image: ../_images/openstack_network.png]
[image: ../_images/openstack_network2.png]

	Create or use ssh key to enable ssh access to the VM:

[image: ../_images/openstack_sshkeys.png]

	In the end press on “Launch Instance” button at the bottom. This initiates the virtual machine deployment. It could take a while:

[image: ../_images/openstack_launch_instance.png]

	When the Power State become “Running”, the virtual machine has been successfully deployed and is ready to be used:

[image: ../_images/openstack_running_intance.png]

	Since the VM is deployed inside private network you will need to associate Floating IP from your network have the access:

[image: ../_images/openstack_running_intance.png]
[image: ../_images/openstack_floating_choose.png]
[image: ../_images/openstack_floating_add.png]
[image: ../_images/openstack_floating_add2.png]
[image: ../_images/openstack_floating_ip.png]

	Now using any SSH client connect to the instance through VPN using the Floating IP address

Docker machine deployment

Official docker-machine documentation: https://docs.docker.com/machine/overview/

1. Instalation

Guide: https://docs.docker.com/machine/install-machine/

2. Configuration

In order to use the OpenStack integration you need to export OpenStack Authentication credentials.

For the future use, create an executable file which will export environmental variables automatically. For example you can call file “openstackrc” and the content of the file be:

VM CONFIG
export OS_SSH_USER=ubuntu
export OS_IMAGE_NAME=Ubuntu1604
export OS_FLAVOR_NAME=m1.medium
export OS_FLOATINGIP_POOL=ext_net
export OS_SECURITY_GROUPS=default
export OS_NETWORK_NAME=int_net

AUTH
export OS_DOMAIN_NAME=default
export OS_USERNAME=<OPENSTACK_USER>
export OS_PASSWORD=<OPENSTACK_PASS>
export OS_TENANT_NAME=geral
export OS_AUTH_URL=http://192.168.93.215:5000/v3

	OS_SSH_USER

	Default ssh user, usually it is ubuntu (if operating system is ubuntu)

	OS_IMAGE_NAME

	OS image to be used during virtual machine deployment

	OS_FLAVOR_NAME

	Virtual machine specification (vCPU, RAM, storage, …)

	Flavor

	vCPU

	Root Disk

	RAM

	m1.tiny

	1

	0

	0.5GB

	m1.smaller

	1

	0

	1GB

	m1.small

	1

	10GB

	2GB

	m1.medium

	2

	10GB

	3GB

	m1.large

	4

	10GB

	8GB

	m1.xlarge

	8

	10GB

	8GB

	ska1.full

	46

	10GB

	450GB

	OS_FLOATINGIP_POOL

	Floating IP external network pool is the “ext_net”

	OS_SECURITY_GROUPS

	Security groups, default is “default”

	OS_NETWORK_NAME

	Private network, default is “int_net”

	OS_DOMAIN_NAME

	OpenStack domain region, default is “default”

	OS_USERNAME

	OpenStack username

	OS_PASSWORD

	OpenStack password

	OS_TENANT_NAME

	OpenStack project name, default is “geral”

	OS_AUTH_URL

	OpenStack Auth URL, default is “http://192.168.93.215:5000/v3”

3. Usage

Complete documentation about docker-machine CLI commands can be found here: https://docs.docker.com/machine/reference/

3.1 Run the enviromental variable file

$. openstackrc

3.2 Create docker-machine

Create a machine. Requires the –driver flag to indicate which provider (OpenStack) the machine should be created on, and an argument to indicate the name of the created machine.

$ docker-machine create --driver=openstack MACHINE-NAME

Creating CA: /root/.docker/machine/certs/ca.pem
Creating client certificate: /root/.docker/machine/certs/cert.pem
Running pre-create checks...
Creating machine...
(MACHINE-NAME) Creating machine...
Waiting for machine to be running, this may take a few minutes...
Detecting operating system of created instance...
Waiting for SSH to be available...
Detecting the provisioner...
Provisioning with ubuntu(systemd)...
Installing Docker...
Copying certs to the local machine directory...
Copying certs to the remote machine...
Setting Docker configuration on the remote daemon...
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running on this virtual machine, run: docker-machine env MACHINE-NAME

In this step docker-machine will create VM inside OpenStack. As soon as the ssh connection to VM is available the Docker service will be installed.

3.3 Set docker-machine environment

Set environment variables to dictate that docker should run a command against a particular machine.

$ docker-machine env MACHINE-NAME

export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.93.23:2376"
export DOCKER_CERT_PATH="/root/.docker/machine/machines/MACHINE-NAME"
export DOCKER_MACHINE_NAME="MACHINE-NAME"
Run this command to configure your shell:
eval $(docker-machine env MACHINE-NAME)

3.4 Configure shell to use your docker-machine

After this, when you execute “docker” command it will be executed remotely

$ eval $(docker-machine env MACHINE-NAME)

Now if you run “docker-machine ls” you see that your machine is active and ready to use.

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS
MACHINE-NAME * openstack Running tcp://192.168.93.23:2376 v18.09.0

3.5 Use “docker” command to remotely deploy docker containers

$ docker run -d -p 80:80 nginx

Unable to find image 'nginx:latest' locally
latest: Pulling from library/nginx
a5a6f2f73cd8: Pull complete
67da5fbcb7a0: Pull complete
e82455fa5628: Pull complete
Digest: sha256:98b06873ea9c87d5df1bb75b650926cfbcc4c53f675dfabb158830af0b115f99
Status: Downloaded newer image for nginx:latest
889a1ab275ba072980fe4fd3ec58094513cf41330c3698b226c239ba490a24a6

3.6 Remove docker-machine

Remove a machine. This removes the local reference and deletes it on the cloud provider or virtualization management platform.

$ docker-machine rm MACHINE-NAME (-f if need force)

3.7 Docker-machine IP

Get the IP address of one or more machines

$ docker-machine ip MACHINE-NAME

192.168.93.23

3.8 Docker-machine list

List currently deployed docker-machines

$ docker-machine ls

NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS
MACHINE-NAME * openstack Running tcp://192.168.93.23:2376 v18.09.0

3.9 Docker-machine upgrade

Upgrade a machine to the latest version of Docker. How this upgrade happens depends on the underlying distribution used on the created instance.

$ docker-machine upgrade MACHINE-NAME

Waiting for SSH to be available...
Detecting the provisioner...
Upgrading docker...
Restarting docker...

3.10 Docker-machine stop

Stops running docker-machine

$ docker-machine stop MACHINE-NAME

Stopping "MACHINE-NAME"...
Machine "MACHINE-NAME" was stopped.

3.11 Docker-machine restart

Restarts docker-machine

$ docker-machine restart MACHINE-NAME

Restarting "MACHINE-NAME"...
Waiting for SSH to be available...
Detecting the provisioner...
Restarted machines may have new IP addresses. You may need to re-run the `docker-machine env` command.

3.12 Docker-machine start

Starts docker-machine

$ docker-machine start MACHINE-NAME

Starting "MACHINE-NAME"...
Machine "MACHINE-NAME" was started.
Waiting for SSH to be available...
Detecting the provisioner...
Started machines may have new IP addresses. You may need to re-run the `docker-machine env` command.

3.13 Docker-machine ssh

Log into or run a command on a machine using SSH.

$ docker-machine ssh MACHINE-NAME

Welcome to Ubuntu 16.04.4 LTS (GNU/Linux 4.4.0-116-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

153 packages can be updated.
81 updates are security updates.

New release '18.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

ubuntu@MACHINE-NAME:~$

Access to the bare metal

In this stage, this option is very restrictive and only in a well-justified situation is allowed.

Index

 _images/openstack_flavor2.png
Details

Source

Flavors manage the sizing for the compute, memory and storage capacity of the instance.

Allocated
Name. vePUS

Networks *

Network Ports.

Security Groups

Key Pair

Configuration

Server Groups.

Scheduler Hints.

Metadata

v Available ()

Q Click here for fiters.

Name. vePUS

Root Disk

1068

Ephemeral Disk

0GB

_images/openstack_floating_add.png
Manage Floating IP Associations

1P Address Select the IP address you wish to associate with the

192.168.93.11 selected instance or port.

Select an IP address.
192.168.93.11

_images/image7.png
T

=]

&]

GitLab Projects v

tango-example

Project

Repository

Cl/cb

Operations

Registry

Packages

Settings

General

Members

Integrations

Repository

cl/co

Operations

Pages

Audit Events

Group

[25T L gTE | greannex L inux)
shared

Runners activated for this project

® 4525738 @ ® 1ct551d

engageska gitlab runner docker executor asu0028 gitlab-shared-runners-manager-3.gitlab.com #157328

Available specific runners ® ed2dce3a

ghared-runners-manager-6.gitlab.com #380987

@ b767f7c5

engageska gitlab runner docker executor

Enable for this project

#568399

@ fa6cabds

shared-runners-manager-3.gitlab.com 244028

EEEE e ED

=

@ 9538boab

gitlab-shared-runners-manager-4.gitlab.com #157329

gitlab-org

@ d5ae8d25

gitlab-shared-runners-manager-5.gitlab.com #380989

gitlab-org

_images/openstack_flavor.png
Source
Networks *
Network Ports
Security Groups

Key Pair

Configuration

Server Groups.
Scheduler Hints

Metadata

Flavors manage the sizing for the compute, memory and storage capacity of the instance.

Allocated
Name VCPUS

v Available

Q Click here for fiters.

Name. vePUS

Total Disk Root Disk Ephemeral Disk

Select an item from Available items below

_images/openstack_floating_ip.png
T openstack. @ efaut « admin ~

Project v
API Access
Compute v
Overview
Images
Key Pairs
Volumes >
Network >
‘Admin >

Identity >

Project / Compute / Instances

Instances

Displaying 2 items

O Instance Name

O testinstance

Displaying 2 items

Image Name

IP Address

192.168.100.13
Floating IPs:
192.168.93.11

Flavor

small

big

Key Pair

Active

Active

Instance ID

Availability Zone

nova

nova

None

None

Filter

Power State

Running

Running

& admin ~

PYRp—

Time since created

3 days, 18 hours

4 months, 1 week

_images/openstack_launch_instance.png
Networks provide the communication channels for instances in the cloud.
v Allocated
Network Status

> it net Active v

EEE ... s tr

Network Ports Q | Click here for fittrs.

Security Groups Network ‘Subnets Associated
Key Pair > extnet subnet2
Configuration

Server Groups.

Scheduler Hints

Metadata

_images/openstack_floating_add2.png
Manage Floating IP Associations

1P Address Select the IP address you wish to associate with the

192.168.93.11 selected instance or port.

Port to be associated
instance-name: 192.168.100.13

cancel ([

_images/openstack_floating_choose.png
Actions

‘Attach Interface

Detach Interface
Edit Instance

Attach Volume
Detach Volume
Update Metadata
Edit Security Groups
Console

View Log

Pause Instance
‘Suspend Instance.
‘Shelve Instance
Resize Instance

Lock Instance

Soft Reboot Instance
Hard Reboot Instance
‘Shut Of Instance
Rebuild Instance
Delete Instance

_images/openstack_login.png
openstack.

Efetuar Log in

_images/openstack_network.png
Networks provide the communication channels for instances in the cloud.
v Allocated
Network

= S

Network Ports. Q Click here for fiters.

Security Groups Network ‘Subnets Associated

> extnet subnet2

Key Pair

Configuration

Server Groups.

Scheduler Hints.

Metadata

_images/image4.png
New project

A project is where you house your files
(repository), plan your work (issues), and
publish your documentation (wiki). among
other things.

Al features are enabled for blank projects,
from templates, or when importing, but you
can disable them afterward in the project
settings.

To only use CI/CD features for an exteral
repository, choose CI/CD for external repo.

Tip: You can also create a project from the
command line. Show command

Blank project Create from template Import project CI/CD for external repo

Run CI/CD pipelines for external repositories

Connect your exteral repositories, and CI/CD pipelines will run for new commits. A GitLab project will be created with only CI/CD features
enabled.

If using GitHub, you'll see pipeline statuses on GitHub for your commits and pull requests. More info

1

Connect repositoui

OGitHuf it Repo by URL

Git repository URL

https://github.com/ska-telescope/ska-skeleton.git

® The repository must be accessible over http://, https:// or git://.

o If your HTTP repository is not publicly accessible, add authentication information to the URL:
https://username: password@gitlab.company. com/group/project.git .

* The connection will time out after 180 minutes. For repositories that take longer, use a clone/push combination.

« To connect an SVN repository, check out this document.

roject name

ska-skeleton-ci

4. SKA group 5

Project URL Project slug
https://gitlab.com/ | ska-telescope ska-skeleton-ci
Want to hg Bjects under the same namespace? Create

roject description (optional)

ska-skeleton.

_images/image5.png
™ ska-telescope > ska-skeleton-ci > Details

s ska-skeleton-ci @ Public & BSD 3-clause "New" or "Revised” License

ska-skeleton-ci

Project ID: 9239625
Mirrored from https://github.com/ska-telescope/ska-skeleton.git.

Updated 26 seconds ago.

0 o Star 0 ¥ Fork HTTPS~ https://gitlab.com/ska-1 @ @ - + v A Global v

Readme Changelog Files (215KB) Commits (34) Branch (1) Tags (0) CI/CD configuration Security Dashboard

Add Contribution guide Add Kubernetes cluster
master v ska-skeleton-ci / + v History Q Find file Web IDE @ -
Merge branch 'master’ of https://github.com/ska-telescope/ska-skeleton 124d7a1c G

Bruno S. Morgado authored 22 hours ago

Name Last commit Last update
B8 ska_skeleton Integrate pylint with pytest and fix code coverage warnings 1 week ago
W tests Integrate pylint with pytest and fix code coverage warnings 1 week ago
3 .gitignore Updated basic Python project skeleton 1 month ago
3 .gitlab-ciyml install requirements 5 days ago
@ .pylintrc ST-18 #comment Added missing pylint initial configuration 6 days ago

3 CHANGELOG.rst Updated basic Python project skeleton 1 month ago

_images/image2.png
" ska-telescope » ska-skeleton-ci > Pipelines.

S ska-skeleton-ci

& Project A1 Pending 0 Running 1 Finished 0 Branches Tags Run Pipelin Clear Runner Caches Cl Lint
B Repository Status pipeline Commit Stages
a/om
#35586017 by @ Ymaster o 124d7a1c n

Pipelines. &} Merge branch 'master’ o... @

Jobs

Schedules

Charts

G Operations

Q Registry

@ Packages

¥ Settings

_images/image3.png
b Projects v Groups v Activity Mileston Snippets

S ska-skeleton-ci Mirroring repositories Collapse

Set up your project to automatically push and/or pull changes to/from another repository. Branches, tags, and commits will be synced
€ Project automatically. Read more

® Repository
Mirror a repository
Cl/CD

Git repository URL

€G3 Operations
Input your repository URL

2 Registry
* The repository must be accessible over http://, https://, ssh:// and git://.
@ Packages ® Include the username in the URL if required: https://username@gitlab.company.com/group/project.git .
* The update action will time out after 180 minutes. For big repositories, use a clone/push combination.
% Settings * The Git LFS objects will not be synced.
* This user will be the author of all events in the activity feed that are the result of an update, like new branches being created
General or new commits being pushed to existing branches.
RpEes Mirror direction
Integrations Push o
Repository o
Authentication method
|
dijer None v
Pages

[2) Only mirror protected branches @

Mirror repository

Mirrored repositories (1) Direction Last update

Audit Events

https://github.com/ska-telescope/ska-skeleton.git Pull 9 minutes ago

_images/image6.png
Projects

New project

A project is where you house your files
(repository), plan your work (issues), and
publish your documentation (wiki), among
other things.

All features are enabled for blank projects,
from templates, or when importing, but you
can disable them afterward in the project
settings.

To only use CI/CD features for an external
repository, choose CI/CD for external repo.

Tip: You can also create a project from the
command line. Show command

Blank project Create from template Import project

Project name

My awesome project

Project URL Project slug
https://gitlab.com/ matteo1981 . my-awesome-project

Want to house several dependent projects under the same namespace? Create a group.

Project description (optional)

Description format

Visibility Level @

© @ private
Project access must be granted explicitly to each user.

© O internal
The project can be accessed by any logged in user.

O @ public

The project can be accessed without any authentication.

(] Initialize repository with a README
Allows you to immediately clone this project'’s repository. Skip this if you plan to push up an existing repository.

CI/CD for external repo

Cancel

_images/openstack_network2.png
Networks provide the communication channels for instances in the cloud.
v Allocated ()
Network Status

> it net Active v

m v Available () Select at least one network

Network Ports Q | Click here for fittrs.

Security Groups Network ‘Subnets Associated
Key Pair > extnet subnet2
Configuration

Server Groups.

Scheduler Hints

Metadata

nav.xhtml

 Table of Contents

 		
 SKA telescope developer portal

_images/image0.png
GitLab.com

GitLab.com offers free unlimited (private) repositories and unlimited
collaborators.

¢ Explore projects on GitLab.com (no login needed)
¢ More information about GitLab.com

¢ GitLab.com Support Forum

¢ GitLab Homepage

By signing up for and by signing in to this service you accept our:

¢ Privacy policy
¢ GitLab.com Terms.

Sign in Register
Username or email
Password
() Remember me Forgot your password?
Sign in with
G Google W Twitter
& Bitbucket

[JJ Remember me

_images/openstack_sshkeys.png
. Akey pair alows you to SSH into your newy created instance. You may sefect an existing key pairimportakey | @)
Details N .

pair, or generate a new ey pair.
Source + Create Key Pair | & Import Key Pair

Flavor Allocated

Displaying 0 items
Networks
Name Fingerprint
Network Ports
Select a key pair from the aveilable key pairs below.

Security Groups

Displaying 0 items

—

Configuration Q | Ciick here for fiters.
Server Groups Displaying 3 items
Scheduler Hints, Name

Metadata

_images/image1.png
Projects

New project

Your projects Starred projects Explore projects Filter by name... Last updated v

Al Personal

_images/openstack_vm_chars.png
Launch Instance

_— Please provide the inital hosiname forthe instance, the avllabilty zone whero t willbe deployed, and the nstance | @)
=) count. Increase the Count to create multiple instances with the same settings.
Source * Instance Name * Total Instances
(1000 Max)

‘ instance-name
Flavor *

Availability Zone 0%
Networks *
nova

Network Ports.

Count
Security Groups 1

Key Pair

Configuration

Server Groups.

Scheduler Hints.

Metadata

<Back | | Next> | EEYETEANESEN

_images/openstack_project_compute_instance.png
T openstack. ® ostaut - admin ~ & admin +

Project v
Project / Compute / Instances
API Access
Compute + [Instances
Overview

Fiter | | @ Launch Instance | R LEEEEEEEEE More Actions v

remeeld

Images | Displaying 2 items

Key Pairs O Instance Name Image Name IP Address Flavor Key Pair Status. Availability Zone Task Power State Time since created Actions

Volumes >
o - m1.medium - Active nova None Running 1 minute Greate Snapshot | ~

Network >

Admin >
o - big Active nova None Running 4months, 1 week Greate Snapshot | ~

Identity >

Displaying 2 items

_images/cluster.png
EngageSKA Cluster

Compute: 232C/464T

Memory: 2.5T8 of RAM

SSD: 21.76TB

HDD: 336078

Link: 10Gigabit with redundancy

10Gigabit Switch (Redundancy)
Server: Dell N4032F
Port: 24 10Gigabit

8 . e

Compute Node 512
Server: Dell PowerEdge R630
CPU: 2x Intel Xeon E5-2650 v4 2.2GHz 12C/24T
RAM: 512 GB
'SSD: 2x 400GB in RAID 0
Link: 2x 10Gigabit and 2x 1Gigabit

Compute Node 128
Server: Dell PowerEdge R630
CPU: 2x Intel Xeon E5-2650 v4 2.2GHz 12C/24T
RAM: 128 GB
SSD: 2x 400G8 in RAID 0
Link: 2x 10Gigabit and 2x 1Gigabit

Controller Node (Redundancy)
Server: Dell PowerEdge R630

CPU: Intel Xeon E5-2620 v4 2.1GHz 8C/16T
RAM: 64 GB

HDD: 4x 600GB SAS in RAID 4

Link: 2x 10Gigabit and 2x 1Gigabit

Storage Node (SSD)

Server: Dell PowerEdge R630

CPU: Intel Xeon E5-2620 v4 2.1GHz 8C/16T
RAM: 64 GB

SSD: 8x 1.92TB 6Gbps

Link: 2x 10Gigabit and 2x 1Gigabit

Storage Node (SAS)
Server: Dell PowerEdge R630
CPU: Intel Xeon E5-2620 v4 2.1GHz 8C/16T
RAM: 64 GB
HDD: 8x L8TB 10K RPM SAS 12Gbps
Link: 2x 10Gigabit and 2x 1Gigabit

_images/openstack_running_intance.png
T openstack. @ efaut « admin ~

Project v
Project / Compute / Instances
API Access
Compute + Instances
Overview

Images Displaying 2 items

Key Pairs O Instance Name Image Name
Volumes > O instance-name -
Network >
o
Admin >
Identity >

Displaying 2 items

IP Address

192.168.100.13

m1.medium

big

Key Pair

Status

Active

Active

Instance ID

Availability Zone

nova

nova

None

None

Filter

Power State

Running

Running

& admin ~

PYRp—

Time since created Actions
e MWO
4 months, 1 week Create Snapshot |~

_images/openvpn_connect.png
‘ No Active Connections ‘

VPN Details...

Connect openvpn

Quit Tunnelblick

_images/openvpn_more.png
Configurations - Tunnelblick

openvpn.ovpn

_images/openstack_vm_os.png
Instance source is the template used to create an instance. You can use an image, a snapshot of an instance)
(image snapshot), a volume or a volume snapshot (if enabled). You can also choose to use persistent storage by
creating a new volume.

Details

Source.

Select Boot Source. Create New Volume

Flavor * Image No

Networks * Volume Size (GB)

Network Ports. !

Security Groups

Key Pair

Configuration

v Available
Server Groups.
Q| Glick here for filtrs.

Scheduler Hints.
Name. Updated size

Metadata
> Ubuntu1604 4/4118 2:54 PM 276,63 MB

> Centos? 414118 2:51 PM 12168

_images/openstack_vm_os2.png
" Instance source is the template used to create an instance. You can use an image, a snapshot of an instance)
Detalls (image snapshot), a volume or a volume snapshot (if enabled). You can also choose to use persistent storage by

creating a new volume.
Source
Select Boot Source. Create New Volume

Flavor* Image [Yes | Mo

Networks * Volume Size (GB) * Delete Volume on Instance Delete

2 Yes | No

Network Ports.

Security Groups

Name Updated
Key Pair

> Centos? 4/4/18 2:51 PM
Configuration
Server Groups v Available €

Q Click here for fiters.
Scheduler

Name. Updated size
Metadata

> Ubuntu1604 4/4118 2:54 PM 276,63 MB

_images/openvpn_open.png
nguage!

No Active Connections
VPN Details.

No VPN Configurations Available
Add a VPN...

Quit Tunnelblick

_images/openvpn_success.png
Tunnelblick

e
B vadon

I In: 111 KB/s 596 KB

144 KBfs 746 KB

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/minus.png

_static/img/logo.jpg
SOUARE KILOMETRE ARRAY

_static/up-pressed.png

_static/up.png

